HRoentbek

Supersonic Gas Jets

Detection Techniques

Data Acquisition Systems
Multifragment Imaging Systems

TDCS8 ISA & PCI
and
TDCS8PCI2
Manual

(9.8.907.1)

P
 esmsERsve

| _sewssssessse
Nesesussenaes
srsrassvusscas

(Sasesssrsssnnsse

s




Roentbek

Mail Addresses:

Headquarter

Roentek Handels GmbH
Im Vogelshaag 8

D-65779 Kelkheim-Ruppertshain
Germany

Frankfurt subsidiary

Roentek Handels GmbH
c/o Institut fur Kernphysik
Max-von-Laue Str. 1

D-60438 Frankfurt am Main
Germany

Web-Site:

www.roentdek.com

WEEE:

DEA48573152

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

All rights reserved. Technical changes may be made without prior notice. The figures are not binding.

We make no representations or warranties with respect to the accuracy or completeness of the contents of this publication

Page 2 of 39

TDCS8 ISA & PCI(2) Manual (9.8.907.1)


http://www.roentdek.com/

Roentbek

Handels GmbH

Table of Contents
1 THE HARDWARE ...t bbbt b bbb bt e bt e e e b e b eb e eb e e bt e bt e e e b et nre e 4
11 ISACBUS TDECB ...ttt b bbbtk b bbb b e e h e s e e b e bt e h e e b £ e b £ e R e e s e e b e bt e bt e bt e b e ene e e n e b 5
O O B U L I 5 12 ST USRT PN 6
R T I D 100 = 4 ISP USRI 7
14 TWO TDCBPCI2 SYNCHRONIZED .....ueeutieitisieesieesieasteasteasseaseasseasteesteassesssessesssessaeassesssesssesseasseasesssesssessssssesssesssesnns 7
15 WHAT IS NEW WITH THE TDCBPCIZ ...ttt st b ettt bbb e 8
2  INSTALLATION OF THE TDCB8 ISA OR PCl ...uiiiitiiiiiieeie ettt st st s 10
3 FIRMWARE UPDATE ...ttt ettt ekttt b e be st e s e e e b e s e e et e e bt ebeese et e besbeebesbeebeeneenteneenaeneas 12
3.1 TDECBPC I ..ttt h et bbbt h R h R R oAb E R R R R R R e bR Rt bt Rt bt e et nn e re e 12
3.2 TDECBPCIZ ...ttt bbb b h b E R R AR R R R R R Rt R e e b e bRt E e Rt bt e e nnenne b 12
4 USING THE TDEC8 CARD ..ottt h bttt b bbbt h bbb e bt e s e b e b ekt e bt e bt e st enb e e e b e b e 14
4.1  GENERAL OPERATION INFORMATION FOR THE TDC8 (ISA AND PCl) ...ooiiiiiiiiieiiiieeesie e 14
411 Two module Mmode With TDCBISA ...ttt bbbttt b e nee b e 14
4.1.2 Two module mode With TDCBPCI .........ooiiiiiii e bbb e 14
413 Two module Mode With TDCBPCIZ ......coviiieieece ettt ettt sba e sbe e be e saeas 15
4.2 ADJIUSTING THE TDC OPEN TIME ...uttiuteitiesteesieesteesteasteastesssesseeseeesteesseassesssessesssesssesssesnsesssesssessssssesssesssesssesssessees 16
4.3 GENERAL INFORMATION TO PROGRAM THE TDCB/ISA .....cviiiiiisiise ettt st 16
4.4 OPERATIONAL DESCRIPTION .....ueittatistieseestesuesseseeasesseessessessessessesssssesssssssnsessessessessessessesssesssssessessessesseesessessensessens 17
441 Configuring the 8255 1/O ChIPS ......oviiviiiiieice bbb 17
4.4.2 LI 0 0] 0T ST 10 0 F= L TSRS 17
443 MTD133B acquiSition and FEAUOUL..........ccieiiiiiiiiicie e s e e e ta e e e teeae e e sreesreenreenes 17
444 C Sample Source Code for TDC8-ISA initialization and read-0Ut ............cccecveieiieriee s 17
45 GENERAL INFORMATION TO PROGRAM THE TDCBPCI(2) .....iveiiieieiie i i sttt 20
45.1 Configuring the MeMACC DAY .........coiiiice e re et e e e esreenreens 20
45.2 Retrieve memory address Of the TDCBPCI(2) .......vcuiiieiieiieie et 20
453 R0 041 O INNURUUON. | HyRsURTUUON. - s e 0 Ly S, RN . O - - O TU U ROURORPPP 21
45.4 TDCBPCIZ ..ol B e sariveven i R i el e eseseeseeseestn s e sresresaseneeseesensenns 25
4.6 USING THE TDC8 CARD WITH COBOLDPC DAQ SOFTWARE ......eiuiiitieitieieaiesieesieesieesteessessesssessessseessesssesssessns 30
46.1 DAN and DAQ MOAUIES. .......eueieereiti ettt sttt ess e ae st e testeeseese e st e testesteaseeneeneeneenaeneeneis 30
4.6.2 The “TDCSE StANAATA.CCL™ ...oovviiiieieiiiiii ettt bbbt nnenne s 30
4.6.3 The “TDCEPCI2 StANAATA.CCI™ ....oouviviiiiiiieit ettt 30
46.4 (DY O B o= T = 10 4[] (=T T O VPSPPI URUPPPR 31
4.6.5 Additional DAQ parameters for TDCBPCI2Z..........coviiiiieiiiiie ettt nae s 31
4.6.6 Additional DAQ parameters for two TDC8PCI or TDC8PCI2 MOdUIES.........cccvevvveviieiiiieiie e 32
4.6.7 (7X@ N ot To] o 11 F= =T SR 32
46.8 DAN parameters and COOPINALES: .........civeiiieie ettt ta e teeste e ae e sreenreenreenes 33
4.6.9 R 0LTo L= W LT I ot 1o 11 o] PSSP 37
LIST OF FIGURES ... ..ottt ettt ettt e e s e et s et et e a8 e e me e s et et s eeeE e e R e ene e s e eneeseeseenbeaneeneaneenseneeneeneenes 39
I 3 IO ] 1A = I PSS 39

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 3 of 39



Roentbek

Handels GmbH

{ The hardware

The TDCS is based on the LeCroy MTD133B chip. This card supports nearly all features of the MTD133B chip. Here the
main features.

¢ Resolution 500ps/channel

e 16-Bit Dynamic Maximum Range

e Common Start and Common Stop (NIM input)

e 8 Channels (NIM input)

e Multi-Hit Operation, 1 to 16 hits, Programmable

e Double pulse resolution typically 10ns, guaranteed < 20ns

e ISA-Version: About 18k events/s/channel/hit on a 400MHz Pentium Computer running CoboldPC DAQ
program. For a detector image with 4 channels and 1 hit/channel the event-rate can be up to about 5000 events/s
PCI-Version: About 30k events/s on a 400MHz Pentium Computer running CoboldPC DAQ program. For a
detector image with 4 channels and 1 hit/channel the event-rate can be up to about 25000 events/s

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 4 of 39



Reentbek

1.1 ISA-Bus TDCS8

Common

Start/Stop
(NIM)

TDC
Channels

1-8 (NIM)

1/0 Address selector I/O chips Potentiometer

Figure 1.1: Front and side view of the TDC8/ISA boatd.

Never ever modify the settings of the potentiometer, unless you have a TDCS8ISA with additional open time
monitor output (see chapter 4.2 and Figure 1.2: TDC8PCI board and front view)!

With the I/O address selector you can select the following I/O addtesses (hexadecimal values).

dip switch number

Address 1 2 3 4

0x300 On On On Off
0x320 (default) Off On On Off
0x380 On On Off Off

Table 1: TDC8 ISA Dip-Switches for I/O selection

TDCS8 ISA & PCI(2) Manual (9.8.907.1) Page 5 of 39



Reentek

1.2 PCI-Bus TDCS8

Common
Start/Stop

(NIM)

TDC
Channels 1-8

(NIM)

TDC
Open Time
Monitor
2TDC
Synchronization
Potentiometer lines

Figure 1.2: TDCS8PCI board and front view

Page 6 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Reentbek

1.3 TDCS8PCI2

TDC 2 : GEETALN
Channels 1-8 AONOT

(NIM)

J i
Common ) ‘ WS I -

Start/Stop
(NIM)

Figure 1.3: TDC8PCI2 board and side view

1.4 Two TDC8PCI2 synchronized

Synchronization Cable

TDC
Channels 1-8

(NIM)

5266
SEETALN
A0¥031

Common

Start/Stop
(NIM)

Figure 1.4: Two TDC8PCI2 in synchronized configuration

TDCS8 ISA & PCI(2) Manual (9.8.907.1) Page 7 of 39



Roentbek

1.5 What is new with the TDC8PCI2

e  First of all the TDC8PCI2 is a single board TDC and not a back packed boatd like the TDC8PCI. Therefore it
used only one PCI slot.

e The Gate Open time is now software adjustable. The Gate Open Monitor (NIM connector) is no longer available.
Even though the actual value can be obtained by reading a certain configuration register.

e Two modules are now internally synchronized by a flat ribbon cable between the two modules.

e A Gate delay can now be programmed for Common Start Mode operation. This mode can be used to block events
coming during this “Gate Delay” time.

e The DevicelD has changed from 0x2001 to 0x2004
e Itis now possible to choose the TDC triggers. The rising and/or falling edge of the signal is selectable.

Page 8 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Roentbek

Handels GmbH

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 9 of 39



Roentbek

2

Installation of the TDC8 ISA or PCI

Shut down your computer
For your devices safety, turn off the power to your computer and all peripheral devices.

Drain static electricity from your body by touching the metal chassis (the unpainted metal at the back of your
computer)

For your personal safety, remove the power cord from your computer
Remove the cover of the computer as described in your computet’s manual.

Adjust the I/O address setting on the card to a free I/O address.
Do not forget to adjust parameter 1 in your .ccf file to this I/O address. For the PCI-Version set this parameter
to 0.

Locate a free ISA or PCI slot in your computer, and firmly insert the card into the selected slot. To avoid damaging
your hardware, insert the card only into a slot with the same bus type as the card. Inserting the card into any other
type of slot can damage your card, your computer, or both.

The TDC8PCI needs two PCI slots even though it connects only to one PCI slot connector.

The TDC8PCI2 needs only one PCI slot!

Firmly secure the adapter with a screw (or clip), to ensure that the adapter is properly grounded to the computer’s
chassis.

Replace the cover of the computer as described in your computer’s manual.

Note for TDC8PCI(2) board!

Normally the PCI support in the BIOS is set to “Plug and Play” for operating systems that can handle plug and play
components like Windows 2000 or Windows XP. In very rare occasions, the TDC is not working in this mode. In this special
case the TDC card is detected but no data taking can be initiated. A DAQ Software like CoboldPC will therefore give no
warning that the TDC could not be detected but the event rate will always be zero.

In this case try to switch the PCI support in BIOS from “Plug and Play” to “None Plug and Play” and try again.

Page 10 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Roentbek

Handels GmbH

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 11 of 39



Reentek

3 Firmware Update
3.1 TDCS8PCI

Please follow the instructions:

e Turn your computer off and unplug the power!
e Dismount the TDC8PCI card

e Locate the chip and replace it with the new one
Please verify the correct marking on the chip and its position on the PCI card!

‘\\\“\‘\.‘\\‘»\“' —

11T 110
D ==
LT LT LT

Mariﬁg

Figure 3.1: Firmware Chip replacement for TDC8PCI

Then mount the card again in your PC... Finished.

3.2 TDC8PCI2

Please follow the instructions:
e Turn your computer off and unplug the power!

e  Dismount the TDC8PCI2 card

e Locate the chip and replace it with the new one
Please verify the correct marking on the chip and its position on the PCI card!

(11011
D ==
A

L1 L

Marking

Figure 3.2: Firmware Chip replacement for TDC8PCI2

Then mount the card again in your PC... Finished.

Page 12 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Roentbek

Handels GmbH

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 13 of 39



Reoentbek

4 Using the TDCS8 card

4.1 General operation information for the TDC8 (ISA and PCI)

Typically the TDCS8 is to be operated as a single module. The TDC8PCI can be easily operated in two module mode. For
the TDCS8ISA this is, due to hardware restrictions on the TDC8 and the PC hardware, not as easy as with the PCI version.

4.1.1 Two module mode with TDCS8ISA

If you have to operate two TDCB8ISA modules in one PC the TDCS8ISA cards have to have different IO addresses!!! Please
verify your hardware settings. By default the 10 address is set to (hex) 320. Do not forget to adjust also the parameters for
the IO address in your CoboldPC ccf file.

A typical problem in this configuration is to synchronize to two ISA boards. To access the TDC8ISA board you have to read
out first one board, then the other. After reading the data from a TDCS8ISA board the board is immediately ready to take
new data. The time difference between the readout of the first and the second TDC8ISA board is several 10us depending on
the amount of data to be transferred. We suggest that you split one channel of the one board and apply the data
simultaneously to the second TDCS8ISA board. (In fact you are loosing one channel on one board). During data analysis you
have to process only events that have the (nearly) same data for that splitted signal.

4.1.2 Two module mode with TDC8PCI

Because PCI is assigning the 10 address automatically you only have to insert the PCI cards to free slots in your PC. Now
connect the two synchronization lines diagonally as shown in Figure 4.1.

Figure 4.1: Connecting two TDC8PCI

All eight channels on each board can be used. The synchronisation is performed automatically by the PCI hardware. A
sample output from the TDC Open Time output (monitor) is shown in Figure 4.3.

Page 14 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Reentbek

4.1.3 Two module mode with TDC8PCI2
Because PCI is assigning the IO address automatically you only have to insert the PCI cards to free slots in your PC. Now

connect the synchronization cable as shown in Figure 4.2.

All eight channels on each board can be used. The synchronisation is performed automatically by the PCI hardware. With this
card there is no TDC Open Time output (monitor) available.

Figure 4.2: Connecting two TDC8PCI2

TDCS8 ISA & PCI(2) Manual (9.8.907.1) Page 15 of 39



Roentbek

4.2 Adjusting the TDC Open Time

Where available on the TDC8 board the TDC open time can be adjusted easily. By default the open time is adjusted to the
32us measure range of the TDCS.

To adjust the open time you have to apply data to the COM input and to one of the eight channels. Then start the TDC8PCI
in “Common Start” mode (for example by using CoboldPC). While the TDC is taking data the open time can be adjusted
by using the potentiometer. The open actual open time can be monitored by the “TDC Open Time Monitor” output signal.

2-Jun-03 MEASURE

14:20:35
1 T OFF
5 ps 1 Parameters
B.50 ¥

—nade
Time
Amplitude

34 my

T "l'l‘r'l!l““'l U —tgpe
Relative

Absolute

by , 1
cursor
Position
5 ys
B e Time 32.00 ps
I g 108 MS/s
2.1 Vv IC | 1 DC1.18V
0 AuTo

Figure 4.3: TDC8 Open Time adjustment (Monitor Output)

4.3 General information to program the TDC8/ISA

To handle all operations of the TDC8/ISA catd you have to access 6 1/O pott addresses. The I/O Base Address is set via

the DIP-Switches (see. Table 1)

PIA1PA =1/0O Base Address + 0 (input/output)
PIA2PA =1/0O Base Address + 4  (input/output)
PIAIPB =1/0O Base Address + 1  (input)
PIA2PB =1/0O Base Address + 5  (output)
Controll = I/O Base Address + 3 (input/output)
Control2=1/0 Base Address + 7 (input/output)

Controll and Control2 are the configuration register of the 8255 1/O chips.

PIA1PA is input/output high byte data
PIA2PA is input/output low byte data

PIA1PB-Bitl = p.out*

PIA1PB-Bit2 = channel number bit 0

PIA1PB-Bit3 = channel number bit 1

PIA1PB-Bit4 = channel number bit 2

PIA1PB-Bit7 = COM Disabled (Data collection finished)
PIA2PB-Bit0 = Enable*

Page 16 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Reentbek

PIA2PB-Bit3 = RESET

PIA2PB-Bit4 = p.in*

PIA2PB-Bit5 = Com-operation Mode (HI = common start)
PIA2PB-Bit6 = Common Stop trigger _/ -

PIA2PB-Bit7 =RCLK

4.4 Operational description

4.4.1 Configuring the 8255 1/0 chips
e  Set Controll to hex 0xc3 and Control2 to hex Oxcl
Configuring the MTD133B chip
e  Set Mode bit with Enable* and p.in* in PIA2PB
e Write ConfigHighByte to PIAIPA  (setup number of Hits bits 0-3 (0 = 16 Hits))
e Write Configl.owByte to PIA2PA  (setup max wait time 8ns + bits(4-15) * 0.5ns)
e Reset TDC chip in Common Start Mode writing hex 0x39 and then 0x30 to PIA2PB
e Reset TDC chip in Common Stop Mode writing hex 0x19, 0x51 and 0x10 to PIA2PB

4.4.2 Test for present data
e Read PIA1PB and wait till Bit 7 is set.

4.4.3 MTD133B acquisition and readout

e Send 3 pulses to PCLK by toggling the PIA2PB Bit 7. (Enable, p.in* and Mode set, RCLK toggle)
e  Then disable p.in* and get the Status. If PIATPB Bit 1 (p.out) is set data is ready for transfer.

e  Toggle RCLK line one more time.

e Get TDC data by reading PIA2PA for lowByte and PIA1PA for highByte.

e Get Status again to extract the channel number by reading PIA1PB.

e  Store channel number and data value of the channel. Increment the hit counter of this channel.

e Ifbit 2 (p.out®) is still set then there is more data available so loop to get the data.

e  After all data is read reenable PIA2PB bit 4 (p.in*).

4.4.4 C Sample Source Code for TDC8-ISA initialization and read-out

The source is not ready for compilation. It is just a fragmentational example of how access the TDCS8ISA card.

#include <GeneralIO.h> // see sample CoboldPC sources
#include <HighResolutionTimer.h> // see sample CoboldPC sources

int iPialpa;
int iPialpb;
int iPiaZ2pa;
int iPiaZ2pb;
int iCtrll;
int iCtrl2;
unsigned int iConfigHigh;
unsigned int iConfigLow;

int iNumberOfHits;
int iEventOpenTime;
int iTriggerModeCommon;

int iEventOpenTime = 32; // in ps
double dConfig = iEventOpenTime - 0.8 / 5e-4;
unsigned int _iConfig = (unsigned int) dConfig;
int iTifferModeCommon = true; // set to common start
bool TDC8ISAInit ()
{
if (!OpenPortsForNT (true)) // use GiveIO driver for port access in NT

return false;
// setting Addresses
int iIoAdr = ISA IO;

TDC8 ISA & PCI(2) Manual (9.8.907.1)

Page 17 of 39



Reentek

iPialpa = iIoAdr
iPialpb = iIoAdr
iPia2pa = iIoAdr
iPia2pb = iIoAdr
iCtrll = iIoAdr + 3;

iCtrl2 = iIoAdr + 7;

// MTD133B initialization

0;
1;
4;
5;

+ + o+ o+

OutputPort (iCtrll, 0xc3); // setup 8285 IO chips
OutputPort (iCtrl2,0xcl);

iConfigLow = (_iConfig & 0x00£0) | (0);

iConfigHigh = (_iConfig & 0x£ff00) >> 8;

return true;

int ISAGetTDC ()

int ch; // local variable for channel number
int delay; // local variable for data value of the TDC
int aa; // local variable for status information of the TDC
int iCount; // local variable for loops
if (iTriggerModeCommon) // select common start or stop mode
OutputPort (iPia2pb, 0x11) ;
else

OutputPort (iPia2pb, 0x31) ;

OutputPort (iPialpa,iConfigHigh); // setup number of Hits bits 0-3 (0 = 16 Hits)
OutputPort (iPia2pa, iConfigLow) ; // setup max wait time 8ns + bits(4-15) * 0.5ns

int WaitCount = 0;

if (iTriggerModeCommon) // Reset TDC
{
OutputPort (iPia2pb, 0x19) ;
OutputPort (iPia2pb, 0x51) ;
OutputPort (iPia2pb, 0x10) ;
}
else
{
OutputPort (iPia2pb, 0x39) ;
OutputPort (iPia2pb, 0x30) ;
}

do // wait for Event (after 100000 loops quit and start all over)
aa = InputPort (iPialpb);

while(((aa & 0x80) != 0x80) && (WaitCount++ <= 100000));

if (WaitCount >= 100000) // 1f exit after 1000000 loops
goto endget; // then signal no events.

if (iTriggerModeCommon) // set Enable* leave rest unchanged
OutputPort (iPia2pb, 0x11) ;

else

OutputPort (iPia2pb, 0x31) ;

for (iCount=1;iCount <= 3;iCount++)// 3 Pulses on RCLK*
{

if (iTriggerModeCommon)

OutputPort (iPia2pb, 0x91) ;
OutputPort (iPiaz2pb, 0x11) ;
}
else
{
OutputPort (iPia2pb, 0xbl) ;
OutputPort (iPia2pb, 0x31) ;

}

if (iTriggerModeCommon) // disable p.in*
OutputPort (iPia2pb, 0x01) ;

else
OutputPort (iPia2pb, 0x21) ;

aa = InputPort (iPialpb) ; // get status

Page 18 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



if((aa & 0x02))

{
memset (TDC, 0, sizeof (TDC)) ;
goto loop2;

}

goto endget;

loop2:

if (iTriggerModeCommon)

{
OutputPort (iPia2pb, 0x81) ;
OutputPort (iPia2pb, 0x01) ;

}

else

{
OutputPort (iPia2pb, 0xal) ;
OutputPort (iPia2pb, 0x21) ;

}

delay = InputPort (iPia2pa) |
aa = InputPort (iPialpb);
ch = (aa & 0Oxlc) >> 2;

if ((ch < MAXIMUM NUMBER OF CHANNELS)
(TDC[ch] [0]++ +1 < MAXIMUM NUMBER OF HITS+1))

TDC[ch] [TDC[ch] [0]] =
else
goto loop2end;

delay;

if(aa & 0x02)
goto loop2;
loop2end:
if (iTriggerModeCommon)
{
OutputPort (iPia2pb, 0x81) ;
OutputPort (iPia2pb, 0x11) ;
}
else
{
OutputPort (iPia2pb, Oxal) ;
OutputPort (iPia2pb, 0x31) ;
}
TDCHitsSum[TDC[0] [0]
TDCHits[TDC[O][0]] +

return true;
endget:

return false;

}

//

//
//

//

//
//

((InputPort (iPialpa) &0x7f)

Reentbek

and test for p.out*

clear all data of TDC array
if set then read channels

not set then quit -> no event

start of TDC readout
Pulse on RCLK*

<< 8); // get TDC data

// TDC status information
// select the channel number

&&

// test valid hit # (hit count over increment)

// if valid then transfer data to TDC array

//

//
//

if not wvalid then quit readout loop

// test if more data is available
yes then loop2 again
no then follow up
reenable p.in*

// signal good event

// signal bad/no event

TDCS8 ISA & PCI(2) Manual (9.8.907.1)

Page 19 of 39



Roentbek

4.5 General information to program the TDC8PCI(2)
The procedure described in chapter 4.4.1, 4.4.2 and 4.4.3 is here performed by an FPGA on the PCI adapter card.

To access the TDC8PCI you need especially two numbers:
Vendor = 10dc (hex)
DevicelID 2001 (hex)

For the TDC8PCI2 these numbers are:
Vendor = 10dc (hex)
DevicelID = 2004 (hex)

The technique used here is called “MemoryAccess”.
Roentek is using the MemAcc library” from Zeal. softstudios (http://zealsoft.com)
There you may download a version and documentation of their software.

Note: the LeCroy Chip has an undocumented “Feature”. After receiving the Restart/Reset signal it has a dead time of about
5us. So in Common-Start Mode a complete Cycle-Time is 32us (Open time to collect Data) + 5us Dead Time = 37ps. That
means the theoretical maximum Event-Rate is about 27kHz!

4.5.1 Configuring the MemAcc library

Call the following functions:
maLicenselnfo("YourName",YourID);
maOpenLibrary();

4.5.2 Retrieve memory address of the TDC8PCI(2)

With
MyVendor = 0x10dc;
MyDevicelD = 0x2001 or 0x2004;
Call now

maGetDeviceBaseAddress(&MyVendor,&MyDeviceID,0,MyDevice)

to retrieve the base memory I/O addtess of the selected device
after that you have to map the physical (not accessible) memory address to your program memory by calling

maMapPhysToLinear(MyDevice[0].BaseAddress,MyDevice[0].Size, &MyDeviceHandle)
This function will return your program memory IO address for the selected device.

Now you access the TDC8PCI(2) only by this memory address.

* MemAcc libraty is © by ZeaL. softstudios

Page 20 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)


http://zealsoft.com/

Roentbek

4.5.3 TDCS8PCI

Multiple cards sync-mode:

Multiple TDC8PCI cards can be used simultancously if the needed number of TDC-channels exceeds 8. The sync-mode
provides an event-based synchronization of several cards. The cards need to be connected via the sync connectors. By setting
the “sync bit” in the “status register” the sync-mode is enabled.

4.5.3.1 Memory block used by the TDC8PCI

TDC8PCI: Vendor ID 0x10DC , Device ID 0x2001, Rev. 10 (X)

FIFO TOP (read top element of FIFO) [r]

Address 0x0000 - OxO7FC:

bit 31 : FIFO empty 1)

bit 30 : toggle event bit 0)

bits 26 — 24 : channel 0)

bits 19 - 16 . 4 bit event counter

bits 15 - 00 : time sample (in TDC bins) ©)

FIFO GET (read and remove top element of FIFO) [r]

Address 0x0800 - OxOFFC:

bit 31 . FIFO empty 1)

bit 30 : toggle event bit 0)

bits 26 — 24 : channel ©)

bits 19 - 16 : 4 bit event counter

bits 15-00 : time sample (in TDC bins) ©)

Elements in FIFO (humber of time samples currently stored in the FIFO) [r]

Address 0x1000 - 0x17FC

FIFO Size (maximum number of elements in FIFO) [r]

Address 0x1800 - Ox1FFC:

bits 31 - 00 : size of FIFO [1025]

TDC Status [riw]

Address 0x2000 - 0x27FC:

bit 31 : FIFO empty (1) (write 1 to reset FIFO and readout)
bit 30 : FIFO full 0)

bits 23 - 16 : card revision number

bit 08 : mode (0) 0=common stop, 1 =common start
bit 02 : write empty events (0) write 0 =discard empty events, 1 = empty events to FIFO
bit 01 : sync two cards (0) write 0 =no sync, 1 =do sync

bit 00 : TDC enable 0)

TDC Range (number of time bins the TDC will accept) [riw]

Address 0x2800 - 0x2FFC :
resets to 65535

bits 31 - 16 : are always 0

bits 03 - 00 :are always 1

TDC Info [riw]
Address 0x3000 - 0x37FC :

bits 31 -24 : number of channels (8)

bits 23 - 16 : bits per time sample (16)

bits 15 - 08 : max number of hits per channel (16)

bits 07 — 00 : number of hits per channel (1)

values larger than 16 are undefined

TDC Resolution (float) (size of atime bin in seconds) [r]
Address 0x3800 - Ox3FFC :
500e-12 <=> 500ps

Read empty events counter [r]
Address 0x4000 - 0x47FC :
bits 31 - 00 : number of empty events since last reset

Read and reset empty events counter [r]
Address 0x4800 - Ox4FFC :
bits 31 - 00 : number of empty events since last reset

Table 2: Memory access table for TDC8PCI

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 21 of 39




Reentek

4.5.3.2 C Sample Source Code for TDC8PCI initialization and read-out

The source is not ready for compilation. It is just a fragmentational example of how access the TDC8PCI card based on the
memacc library

#include <HighResolutionTimer.h>
#include <MemAcc.h>

L1177 7777 7777777777777777777777777777777777777777777777
/////// SPECIAL STUFF

[ 777777777777777777777777777777777777777777777777777777777777
#define MAXIMUM NUMBER OF HITS 16

#define MAXIMUM NUMBER OF CHANNELS 8

BADDR MyDevice[6];
USHORT MyVendor;

USHORT MyDevicelID;
unsigned int *iPCIIoAdr;
HANDLE MyDeviceHandle;

bool bTDCFirstRead;

unsigned int _uilastEventFirstFIFOData;

unsigned int uiEventToggleFlag;

unsigned char *pucTDCChannel; // channel at offset 2 from 32 bit information (INTEL FORMAT!)
unsigned int *puiFIFO0Get;

unsigned int uiFIFOData;

unsigned short usTDCData;

unsigned char ucTDCChannel;

unsigned short TDC[MAXIMUM NUMBER OF CHANNELS] [MAXIMUM NUMBER OF HITS+1];

[I17777777777777777777777777 770007 777777777777770770777777777777
/////// SPECIAL STUFF
[1777777777777777777777777777 10000 077777777747777717717771117/7777

int iEventOpenTime = 32; // in us

double dConfig = iEventOpenTime - 0.8 / 5e-4;

unsigned int _iConfig = (unsigned int)_ dConfig;

int iTifferModeCommon = true; / set to common start

bool TDC8Init ()
{
// MemAccess Stuff
maLicenseInfo ("YourName", YourID) ;
maOpenLibrary () ;
MyVendor = 0x10dc;
MyDeviceID = 0x2001;
if (maGetDeviceBaseAddress (&MyVendor, &MyDeviceID, 0,MyDevice) != 1)
{
AfxMessageBox ("No TDC8/PCI could be found.");
iPCIIoAdr = 0x0000;
return false;
}
else
{
iPCIIoAdr = (unsigned int *)maMapPhysToLinear (MyDevice[0].BaseAddress,MyDevice[0].Size,
&MyDeviceHandle) ;
1if (!iPCIIoAdr)
{
AfxMessageBox ("Can not map Physical to Linear Memory!");
iPCIIoAdr = 0x0000;
return false;
}
}
iToAdr = MyDevice[0].BaseAddress;

pucTDCChannel = ((unsigned char *)&uiFIFOData)+3; // channel at offset 2 from 32 bit
// information (INTEL FORMAT!)

PuilFIFOGet = &iPCIIoAdr[FIFOGET];

[1770777 7777777 777777777

// TDC8 Stuff

/11T

// config, reset, enable

iPCIIoAdr [TDCSTATUS] = 0x80000000; // reset and disable

Page 22 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



iPCIIoAdr [TDCINFO] 15;

iPCIIoAdr [TDCRANGE] iEventOpenTime*10000/5;
1PCITIoAdr [TDCRANGE] Oxffff;

int iData 0x00000001 |
1iPCITIoAdr [TDCSTATUS] iData;
_bTDCFirstRead = true;

return true;

}

void TDC8Exit ()
{

maUnmapPhysicalMemory (MyDeviceHandle, iPCIIoAdr);
maCloselLibrary();
}
int PCIGetTDC ()
{
int WaitCount = 0;
unsigned int uiCEC = iPCIIoAdr[TDCCEC];
if (_bTDCFirstRead)
{
do
{
// get the data
uiFIFOData = *puiFIF0Get;
if (! (ulFIFOData & 0x80000000))
{
_bTDCFirstRead = false;
break;
}
if (WaitCount++ >= 100000)
{
117707777 77717710 7177777777
// TDC8 Stuff
[1777777 7777770 077777777
// config, reset, enable
1PCITIoAdr [TDCSTATUS] = 0x80000000;

1iPCIIoAdr [TDCINFO] = 0;
iPCITIoAdr [TDCRANGE]

iPCIIoAdr [TDCSTATUS]

iEventOpenTime*10000/5
0x00000001 | (((iTrigg

_bTDCFirstRead
return false;

true;

}
}
while (true);
}
else
uiFIFOData

_uilLastEventFirstFIFOData;

int _iData iPCIIoAdr [TDCSTATUS] ;

memset (TDC, 0, sizeof (TDC)) ; //

int tCount 0;
// store the EventToggleFlag
_uiEventToggleFlag uiFIFOData & 0x40000000;

// now process the data
do
{

usTDCData uiFIFOData & 0x0000ffff;
ucTDCChannel *pucTDCChannel & Ox1f;
if (ucTDCChannel < MAXIMUM_NUMBER_OF_CHANNELS)

{

// increase Hit Counter;
TDC[ucTDCChannel] [0] ++;

// test for oversized Hits
if (TDC [ucTDCChannel] [0] > MAXIMUMiNUMBERiOFiHITS)
{

// # of hits > 16 then stop readout but signal good

(((iTriggerModeCommon) &0x00000001)

Reentbek

// Get all hits... _iNumberOfHits;
// info sets the #of Hits (1...16)
// ps*1le6/500
// ps*1le6/500

<< 8);

// enable TDC and Common select

// reset and disable
//_iNumberOfHits;

// info sets the #of Hits (1...16)
i // us*le6/500
erModeCommon) &0x00000001) << 8);

// enable TDC and Common select

clear TDC array

// prepare event toggle flag and store it

event

TDCS8 ISA & PCI(2) Manual (9.8.907.1)

Page 23 of 39



Reentek

Handels GmbH
// reset TDC and indicate no event

[1117777777777777777777
// TDC8 Stuff
[17777777777777777777777

// config, reset, enable

1PCITIoAdr [TDCSTATUS] = 0x80000000; // reset and disable
iPCIIoAdr [TDCINFO] = 0; // iNumberOfHits;
// info sets the #of Hits (1...16)
iPCIToAdr [TDCRANGE] = iEventOpenTime*10000/5; // ps*1le6/500
iPCIToAdr [TDCSTATUS] = 0x00000001 | (((iTriggerModeCommon) &0x00000001) << 8);

// enable TDC and Common select
_bTDCFirstRead = true;
return true;
}
// if Hit # ok then store it

TDC [ucTDCChannel] [TDC[ucTDCChannel] [0]] = usTDCData;
}
uiFIFOData = *puiFIFOGet; // read new data from FIFO
}
while (! (uiFIFOData & 0x80000000) && ((uiFIFOData & 0x40000000) == uiEventToggleFlaqg));

// read as long as EventToggleFlag doesn't change

// 1f running out of data then

// signaling again first read of data!

if (uiFIFOData & 0x80000000)
_bTDCFirstRead = true;

// store last FIFO data
_uiLastEventFirstFIFOData = uiFIFOData;

return true;

Page 24 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Roentbek

4.5.4 TDCS8PCI2
The Gate Delay function is new for the TDC8PCI2 module. All other functions are the same as for the TDC8PCI module.

Gate Delay:
[register value] * 30ns + 150ns = gatedelay|ns]
Values > 64 lead to minimal gate delay of 10ns

Gate Open Time:
[register value] * 30ns = gate opentime[ns]

Multiple cards sync-mode:

Multiple TDC8PCI2 cards can be used simultaneously if the needed number of TDC-channels exceeds 8. The sync-mode
provides an event-based synchronization of several cards. The cards need to be connected via the sync connector. By setting
the “sync bit” in the “status register” the sync-mode is enabled.

Note: Please make sure that the sum of GateDelay and GateOpenTime is smaller than the TDCRange. If the sum is greater
and hits arrive between TDCRange and GateDelay+GateOpenTime then all data of that event will be lost and the hit counter
is set to 0!

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 25 of 39



Roentbek

4.5.4.1 Memory block used by the TDC8PCI2

TDC8PCI:

Vendor ID 0x10DC , Device ID 0x2004, Rev. 2 (0x02)

FIFO TOP (read top element of FIFO)
Address 0x0000 - 0X07FC:

[r]

bit 31 : FIFO empty Q)

bit 30 : toggle event bit ©)

bit 29 : empty event valid event = 0, event invalid, did not contain data =1
bit 28 : edge type rising edge =0, falling edge =1

bit 27 : last data in event ©)

bits 26 — 24 : channel 0)

bits 19 - 16 : 4 bit event counter

bits 15 - 00 : time sample (in TDC bins) 0)

FIFO GET (read and remove top element of FIFO) [r]

Address 0x0800 - OxOFFC:

bit 31 : FIFO empty 1)

bit 30 : toggle event bit 0)

bit 29 : empty event valid event = 0, event invalid, did not contain data =1
bit 28 : edge type rising edge =0, falling edge =1

bit 27 : last data in event 0)

bits 26 — 24 : channel ©)

bits 19 - 16 : 4 bit event counter

bits 15 -00 : time sample (in TDC bins) ©)

Elements in FIFO (number of time samples currently stored in the FIFO) [r]

Address 0x1000 - 0x17FC

FIFO Size (maximum number of elements in FIFO)
Address 0x1800 - Ox1FFC:

bits 31 - 00 :

size of FIFO [2049]

1]

TDC Status

Address 0x2000 - 0x27FC:

[riw]

bit 31 . FIFO empty (1) write 1 to reset FIFO and readout
bit 30 : FIFO full 0)
bits 23 - 16 : card revision number
bit 10 : record rising edge disabled = 0, enabled =1
bit 09 : record falling edge disabled = 0, enabled =1
bit 08 : mode (0) 0=common stop, 1 =common start
bit 02 : write empty events (0) write 0 =discard empty events, 1 = empty events to FIFO
bit 01 : sync two cards (0) write 0 =no sync, 1 =do sync
bit 00 : TDC enable 0)
TDC Range (number of time bins the TDC will accept) [riw]
Address 0x2800 - Ox2FFC :
resets to 65535
bits 31 - 16 :are always 0
bits 3-0 :are always 1
TDC Info [riw]
Address 0x3000 - 0x37FC :
bits 31 -24 : number of channels (8)
bits 23 - 16 : bits per time sample (16)
bits 15 - 08 : max number of hits per channel (16)
bits 07 — 00 : number of hits per channel 1)
values larger than 16 are undefined
TDC Resolution (float) (size of atime bin in seconds) [r]
Address 0x3800 - Ox3FFC :
500e-12 <=> 500ps
Read empty events counter [r]
Address 0x4000 - Ox47FC :
bits 31 - 00 : number of empty events since last reset
Read and reset empty events counter [r]
Address 0x4800 - Ox4FFC :
bits 31 - 00 : number of empty events since last reset
Common-Start acquisition gate [riw]

Address 0x5000 - OxX57FC :
bits 23 - 16 : gate delay (64)
bits 15 - 00 :acquisition gate open time

(1080)

Table 3: Memory access table for TDC8PCI

Page 26 of 39

TDC8 ISA & PCI(2) Manual (9.8.907.1)




Reentbek

4.5.4.2 C Sample Source Code for TDC8PCI2 initialization and read-out

The source is not ready for compilation. It is just a fragmentational example of how access the TDC8PCI2 card based on the
memacc library

#include <HighResolutionTimer.h>
#include <MemAcc.h>

L1777 7777777777 777777777777777777777777777777777777777777
/////// SPECIAL STUFF

[ 777777777777777777777777777777777777777777777777777777777777
#define MAXIMUM NUMBER OF HITS 16

#define MAXIMUM NUMBER OF CHANNELS 8

BADDR MyDevice[6];
USHORT MyVendor;

USHORT MyDevicelID;
unsigned int *iPCIIoAdr;
HANDLE MyDeviceHandle;

bool bTDCFirstRead;

unsigned int _uilastEventFirstFIFOData;

unsigned int uiEventToggleFlag;

unsigned char *pucTDCChannel; // channel at offset 2 from 32 bit information (INTEL FORMAT!)
unsigned int *puiFIFO0Get;

unsigned int uiFIFOData;

unsigned short usTDCData;

unsigned char ucTDCChannel;

unsigned short TDC[MAXIMUM NUMBER OF CHANNELS] [MAXIMUM NUMBER OF HITS+1];

[0 777777777777777777777 7000 0777777777777777777777777777777
/////// SPECIAL STUFF
[1717777777777777777777777777770777777777777140777777777111777777

int iEventOpenTime = 32; // in us

double dConfig iEventOpenTime - 0.8 / 5e-4;

unsigned int _iConfig = (unsigned int) dConfig;

int iTifferModeCommon = true; / set to common start

bool TDC8Init ()
{
// MemAccess Stuff
maLicenseInfo ("YourName", YourID) ;
maOpenLibrary () ;
MyVendor = 0x10dc;
MyDeviceID = 0x2004;
if (maGetDeviceBaseAddress (&MyVendor, &MyDeviceID, 0,MyDevice) != 1)
{
AfxMessageBox ("No TDC8/PCI could be found.");
iPCIIoAdr = 0x0000;
return false;
}
else
{
iPCIIoAdr = (unsigned int *)maMapPhysToLinear (MyDevice[0].BaseAddress,MyDevice[0].Size,
&MyDeviceHandle) ;
1if (!iPCIIoAdr)
{
AfxMessageBox ("Can not map Physical to Linear Memory!");
iPCIIoAdr = 0x0000;
return false;
}
}
iToAdr = MyDevice[0].BaseAddress;

pucTDCChannel = ((unsigned char *)&uiFIFOData)+3; // channel at offset 2 from 32 bit
// information (INTEL FORMAT!)

PuilFIFOGet = &iPCIIoAdr[FIFOGET];

[1770777 7777777 777777777

// TDC8 Stuff

L1077 7777777777777777777

// config, reset, enable

iPCIIoAdr [TDCSTATUS] = 0x00000000; // reset and disable

iPCIIoAdr [TDCSTATUS] = 0x80000000; // reset and disable

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 27 of 39



Reentek

1iPCIIoAdr [TDCINFO] = 0x00; // Get all hits... iNumberOfHits;
// info sets the #of Hits (1...16)
iPCIIoAdr [TDCRANGE] = iEventOpenTime*10000/5; // us*1e6/500
1PCITIoAdr [TDCRANGE] = Oxffff; // ps*1le6/500
int iData =
1 | // TDC enable
( ( (bEmptyEvents) &0x00000001) << 2) |
(((!'iTriggerModeCommon) &0x00000001) << 8) |
(((bFallingEdge) &0x00000001) << 10) |
(((bRisingEdge) &0x00000001) << 9);
1PCITIoAdr [TDCSTATUS] = iData; // enable TDC and Common select
_bTDCFirstRead = true;
// Common start acquisition gate
// bit 00 - 15 = gate open time *30ns = gate open time[ns]
// bit 16 - 23 = gate delay *30ns+150ns = gate delay([ns]

iPCITIoAdr [TDCCOMMONSTARTGATE] =
return true;

iGateOpen +

}

void TDC8Exit ()
{

maUnmapPhysicalMemory (MyDeviceHandle, iPCIIoAdr) ;
maCloseLibrary () ;

}

int PCIGetTDC (CDoubleArray *pParameter)
{
int WaitCount = 0;
if (_bTDCFirstRead)
{
do
{
// get the data
uiFIFOData = *puiFIF0Get;
if (! (ulFIFOData & 0x80000000))
{
_bTDCFirstRead = false;
break;
}
if (WaitCount++ >= 100000)
{
LI EEL LT
// TDC8 Stuff
[T
// config, reset, enable
1PCIIoAdr [TDCSTATUS] = 0x00000000;
1PCITIoAdr [TDCSTATUS] = 0x80000000;
iPCIIoAdr [TDCINFO] 0;

I

1PCIIoAdr [TDCRANGE

] = iEventOpenTime*10000/5;
1iPCITIoAdr [TDCSTATUS

| // TDC enable

(iGateDelay << 16);

// reset and disable

// reset and disable

// iNumberOfHits;

// info sets the #of Hits
// ps*1le6/500

(1...

]

1

(((bEmptyEvents) &0x00000001) << 2) |

(((!'iTriggerModeCommon) &0x00000001) << 8) |

(((bFallingEdge) &0x00000001) << 10) |

(( (bRisingEdge) &0x00000001) << 9);
_bTDCFirstRead = true;

return false;
}
}
while (true);
}
else
uiFIFOData = _uilastEventFirstFIFOData;

memset (TDC, 0, sizeof (TDC)) ; // clear TDC array
int tCount = 0;

// store the EventToggleFlag

_uiEventToggleFlag = uiFIFOData & 0x40000000;

// now process the data
do
{

// prepare event

toggle flag and store it

Page 28 of 39

TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Reentbek

usTDCData = uiFIFOData & Ox0000ffff;
ucTDCChannel = *pucTDCChannel & 0x07;
if (ucTDCChannel < MAXIMUM NUMBER OF CHANNELS)
{

// increase Hit Counter;

TDC [ucTDCChannel] [0] ++;

// test for oversized Hits

if (TDC[ucTDCChannel] [0] > MAXIMUM NUMBER OF HITS)

{
// # of hits > 16 then there is something wrong
// reset TDC and indicate no event

[177177777777777777777777
// TDC8 Stuff
[111777777777777777777

// config, reset, enable

iPCIIoAdr [TDCSTATUS] = 0x00000000; // reset and disable
1iPCIIoAdr [TDCSTATUS] = 0x80000000; // reset and disable
iPCIIoAdr [TDCINFO] = 0; // iNumberOfHits;
// info sets the #of Hits (1...16)
iPCIToAdr [TDCRANGE = iEventOpenTime*10000/5; // ps*1le6/500

1
iPCIIoAdr [TDCSTATUS] =
| // TDC enable
bEmptyEvents) &§0x00000001) << 2) |
!'iTriggerModeCommon) &0x00000001) << 8) |
bFallingEdge) &0x00000001) << 10) |

]
1
(
(
(
(((bRisingEdge) &0x00000001) << 9);

(
(
(
(

_bTDCFirstRead = true;
return false;

}
// if Hit # ok then store it

TDC [ucTDCChannel] [TDC [ucTDCChannel] [0]] = usTDCData;
}
uiFIFOData = *puiFIFOGet; // read new data from FIFO
}
while (! (uiFIFOData & 0x80000000) && ((uiFIFOData & 0x40000000) == uiEventToggleFlag)):;

// read as long as EventToggleFlag doesn't change

// 1f running out of data then

// signaling again first read of data!

if (uiFIFOData & 0x80000000)
_bTDCFirstRead = true;

// store last FIFO data
_uilLastEventFirstFIFOData = uiFIFOData;

if(TDC[1][1] == 0)
return true;

return true;

TDCS8 ISA & PCI(2) Manual (9.8.907.1) Page 29 of 39



Roentbek

4.6 Using the TDCS8 card with CoboldPC DAQ software

4.6.1 DAN and DAQ Modules

To operate your TDC8 modules please copy the appropriate DAN.AIl and DAQ.dIl files to the installation directory of
CoboldPC. They ate placed in the folder “DAN and DAQ\DotNet” that you find in the installation directory of
CoboldPPC.

TDCS8 folder contains files for the TDC8 and TDC8PCI version
TDC8PCI2 folder contains files for the TDC8PCI2 version
2TDCS8 folder contains files for double TDCS8 and/or TDC8PCI version

2TDC8PCI2 folder contains files for double TDC8PCI2 version

The “2TDC8PCI2 Standard.ccf” is valid for double TDCS8, TDC8PCI and TDC8PCI2 versions.

4.6.2 The "TDCS8 Standard.ccf”

We have prepared the sample command file “TDC8 Standard.ccf” according to your DAQ hardware for first use. It provides
already most of the desired data, i.e. 2d position spectra and time-of-flight spectra in various coordinate representations. The
program calls several subprograms that define parameters and coordinates which are attributed to the data acquisition part
and the data analysis part of the event handling. Finally it defines spectra (and conditions). Due to this modular construction
it is possible to use almost the same data analysis sequences for different hardware (i.e. TDC types). Some users find this
sequenced structure of the “TDCS8 Standard.ccf” file not adequate for their work. If so you may create your own
“TDC8 Standard_personal.ccf” by replacing the “exe” commands by directly pasting the subprogram commands into the
new “TDCS8 Standard_personal.ccf”. Please observe the order of commands.

The standard defined coordinates, spectra and condition gates in the “TDCS8 Standard.ccf” are (please refer also to the
commented lines in the “TDC8 Standard.ccf”):

restart (reset of eatlier commands)

execute subDAQ\TDC8\Standard-Parameters.ccf (executes the commands in the specific file)
execute subDAN\Standard-Parameters.ccf (executes the commands in the specific file)
execute subDAQ\TDC8\Standard-Coordinates.ccf (executes the commands in the specific file)
execute subDAN\Standard-Coordinates.ccf (executes the commands in the specific file)
execute subDAN\Standard-Spectra.ccf (executes the commands in the specific file)
new (defines the session type, calls selector box)

start (start the measurement)

show stat (show the status display)

4.6.3 The "TDC8PCI2 Standard.ccf”

We have prepared the sample command file “TDC8PCI2 Standard.ccf” according to your DAQ hardware for first use. It
provides already most of the desired data, i.e. 2d position spectra and time-of-flight spectra in various coordinate
representations. The program calls several subprograms that define parameters and coordinates which are attributed to the
data acquisition part and the data analysis part of the event handling. Finally it defines spectra (and conditions). Due to this
modular construction it is possible to use almost the same data analysis sequences for different hardware (i.e. TDC types).
Some users find this sequenced structure of the “TDC8PCI2 Standard.ccf” file not adequate for their work. If so you may
create your own “TDC8PCI2 Standard_personal.ccf” by replacing the “exe” commands by directly pasting the subprogram
commands into the new “TDC8PCI2 Standard_personal.ccf”. Please observe the order of commands.

The standard defined coordinates, spectra and condition gates in the “TDC8PCI2 Standard.ccf” are (please refer also to the
commented lines in the “TDC8PCI2 Standard.ccf”):

restart (reset of earlier commands)

execute subDAQ\TDC8PCI2\Standard-Parameters.ccf (executes the commands in the specific file)
execute subDAN\Standard-Parameters.ccf (executes the commands in the specific file)
execute subDAQ\TDC8PCI2\Standard-Coordinates.ccf (executes the commands in the specific file)
execute subDAN\Standard-Coordinates.ccf (executes the commands in the specific file)
execute subDAN\Standard-Spectra.ccf (executes the commands in the specific file)

Page 30 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



new
start
show stat

Reentbek

(defines the session type, calls selector box)
(start the measurement)
(show the status display)

4.6.4 DAQ parameters

Parameter

Parameter

Parameter

Parameter

Parameter

Parameter
Parameter

Parameter
Parameter

Parameter

Parameter

Parameter

Parameter
Parameter
Parameter

1

2

~J

20

21

30

32
33
40

Address of the I/0 card or 0 for PCI bus auto detection mode.
PCI bus auto detection is only valid for the TDC8 Modules with
PCI IO cards. A value smaller than 16 specifies the Device # of
the TDC8PCI (2) board starting with O.

Time stamp for an event as obtained from the PC in us. Setting
this parameter to 1 or 2 will record the computer clock with
the event as 32bit or 64bit value from the time data
acquisition start. Please note that the accuracy of the
recorded time is not guaranteed.

The time information is also dependent on the mother board of

your PC.
0 = no Timestamp,
1 = 32Bit Timestamp (Low.Low, Low.high)
2 = 64Bit Timestamp (Low.Low, Low.high, High.Low,
High.high)

System reset time (in seconds) in case of missing signals (do
not change without consulting EReendbek)

Time scaling (internal parameter)

Used to calibrate the time stamp.

DAQ-version number (internal parameter)

Start time of list mode file (internally set)

DAQ-ID (internal parameter)

DAQ ID RAW 0x000000 for RAW (no Data)
DAQ ID TDCS8 0x000002 for TDC8/ISA/PCI
DAQ ID 2TDC8 0x000005 for 2 TDC8

(Advanced Burst Mode)
LMF-version number (internal parameter)
Defines whether common start or common stop mode is used.

Default is 0 = common start. If the common stop mode (= 1) 1is
used, the TDC output values should be considered being negative
numbers. In this case the definition of coordinates

x1,x2,y1,y2,z1 and z2 as function of the raw TDC values CmH1
changes: the values are additionally multiplied by the factor
(-1).
TDC resolution (internally set).
For the TDC8 the resolution (LSB) is fixed to 500ps, the range
is 1l6bit (32us).
TDC data type information (internally set)

0 = Not defined

1 Channel information

2 = Time information (in ns)
Event open time in us.
Maximal time after the start that the TDC waits for stops.
number of channels to be read out
maximum number of hits to be read out
DataFormat (Internally set)

4.6.5 Additional DAQ parameters for TDCS8PCI2

Parameter

Parameter

Parameter

45

46

47

gate delay

gate delay *30ns+150ns = gate delay[ns]
acquisition gate opentime

gate open time *30ns = gate open time[ns]

write empty events
0 discard empty events

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 31 of 39



Roentbek

Parameter

Parameter

Parameter
Parameter

48

49

50
51

1 write empty events
trigger falling edge

0 disable

1 enable
trigger rising edge

0 disable

1 enable
EmptyCounter,
EmptyCounter,

sum (Internally set)
since last Event (Internally set)

4.6.6 Additional DAQ parameters for two TDC8PCI or TDC8PCI2 Modules
Instead of using the “TDC8 Standard.ccf” or “TDC8PCI2 Standard.ccf” please use the “2TDC8PCI2 Standard.ccf”

command file.

Parameter
Parameter
Parameter

Parameter

Parameter

Parameter

Parameter

Parameter

Parameter

Parameter

Parameter

34
35
60

61

65

66

67

68

69

70

71

2™ PCI card: number of channels to be read out
2™ PCI card: maximum number of hits to be read out
2 PCI Card mode

0 = Sync Test off

1 = Sync Test on
2™ PCI card: Device # of the TDC8PCI (2) board
gate delay (2nd TDC)

gate delay *30ns+150ns = gate delay[ns]
acquisition gate opentime (2nd TDC)

gate open time *30ns = gate open time[ns]

write empty events (2nd TDC)

0 discard empty events

1 write empty events
trigger falling edge (2nd TDC)

0 disable

1 enable
trigger rising edge

0 disable

1 enable
EmptyCounter, sum (Internally set)

(since PCIVersion8 or PCI2) (PCI only) (TDC2)
EmptyCounter, since last Event (Internally set)

(sincd PCIVersion8 or PCI2) (PCI only) (TDC2)

(2nd TDC)

4.6.7 DAQ coordinates

According to the settings of these patameters above the CoboldPC program will retrieve the following coordinates and (if
selected) will store them event by event to the hard disc.

The format is defined in the CoboldPC manual, each event is a n-tupel {...,...,ecer...... JOf the consutive coordinates as binary
numbers depending on the settings of parameters 2, 32 and 33:

{

TRawl, TRaw2, TRaw3, TRawd -
S1,C1lH1,...,ClHn

e e
Sm, CmH1,

}

4

if selected TimeStamp raw information)

(
- n = para 33 (H stands for hit number)
. ;e ey (S stands for the status register)
. .CmHn - m = para 32 (C stands for TDC channel number)

Further coordinates are calculated by the DAN (data analysis part), however these will not be stored to disc but appended to
the list, all coordinates (from DAQ and DAN) are internally numbered:

pEventData->GetAt (0)
pEventData->GetAt (1)
pEventData->GetAt (2)

Page 32 of 39

TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Reentbek

For the “TDC8(PCI2) Standard.ccf” n is set to 1 (one hit read-out only) and m equals 4 (6 in case of the Hexanode, see
additional manual), the number of stored DAQ coordinates is 8 (12) if the timestamp is disabled, otherwise 12 (16).
For the “2TDC8PCI2 Standard.ccf” n is set to 1 but m is set to 8 for both TDC modules.

4.6.8 DAN parameters and coordinates:

While the parameters the DAQ part have only the function to define and organize the hardware (and are mandatory), the
DAN parameters are used in the data analysis part. The DAN.dIl is a data analysis subprogram that complements the raw
DAQ coordinates by computed coordinates, such as the position or time sum (TOF) derived from the raw data. It also
comprises some correction, shifting and rotation computations and coordinate system transformations, so that the basic
computations for experiments with a position and time sensitive detector are already available without changing the DAN.dIl
supplied here.

The computations yield in an additional set of coordinates (DAN-coordinates) that are internally treated as independent
coordinates and are internally listed by numbers, following the last hardware coordinate (although they are not stored to hard
disc in the list-mode file). This DAN.dIl may be alteted using a MS-C++ or DEC-Fortran compiler (see CoboldPC manual)
and the list of coordinates my be changed, creating additional coordinates (and parameters) for further computation, unused
DAN coordinates may be removed. A newly defined coordinate is available for further computations. It is clear that the
program will only operate well, if all definitions in the filename.ccf (e.g. the “TDC8 Standard.ccf”) are in accordance with the
DAQ.dll and DAN.dII used. After the new or start command the program makes a consistency check and may give an error
message if the number of coordinates and parameters defined are not sufficient, however, it will not detect all possible
discrepancies.

4.6.8.1 DAN parameters

Even though the parameters from 1 to 99 are mainly used for the DAQ module some of this information is also useful for
the data analyses. So some parameters are again listed here. During offline analysis these parameters are automatically set
from the parameter information (settings during data acquisition) that is stored in the Imf-file. So these are DAN-parameters
but they are reread from List-Mode file header.

Parameter 2 Save TimeStamp

0 = no Timestamp,

1 = 32Bit Timestamp (Low.Low, Low.high)

2 = 64Bit Timestamp (Low.Low, Low.high, High.Low,

High.high)

Parameter 5 TimeScaling (Internally set, tics per s)
Parameter 6 DAQ Version # (Internally set)
Parameter 7 Start time of list mode file (internally set)
Parameter 8 DAQ ID

DAQ ID RAW 0x000000 for RAW (no Data)

DAQ ID TDC8 0x000002 for TDC8/ISA/PCI

DAQ ID 2TDCS8 0x000005 for 2 TDC8

(Advanced Burst Mode)
Parameter 20 Resolution of TDC in ns (internally set)
For the TDC8 the resolution (LSB) is fixed to 500ps, the range
is 1le6bit (32us).

Parameter 21 TDC data type information (internally set)

0 = Not defined

1 = Channel information

2 = Time information (in ns)
Parameter 32 number of Channels (reread during offline)
Parameter 33 number of hits (reread during offline)
Parameter 40 DataFormat (Internally set)

The following DAN-parameters used in the DAN-part can have the function of variables for computations, of pointers or of
flags. Some are mandatory, some are optional. Standard DAN will use the parameter range 100-299. The following
parameters and coordinates are used in the standard “TDC8(PCI2) Standard.ccf”:

Parameter 100 Conversion Parameter for RAW data

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 33 of 39



Reentek

Parameter

Parameter

Parameter

Parameter

Parameter

Parameter

Parameter

102

103

105

106

107

110

111

Usually (parameter value 0), the data output from a TDC8 TDC
channel is coded in channel numbers”. The channel number is the

number of resolution bins (i.e. LSB). If it is set to 1 the
unit is transformed to ns, using the TDC resolution value
(parameter 20). If the parameter is 2, a position in mm is
calculated, using the values of parameters 110 and 111 (and
112) . The time sum values are in ns unless the parameter is 0.
Hexanode calculations

0 = no Hexanode

1 = Hexanode

If a Hexanode is used additional calculations are required to
retrieve the position information. For these parameters and
coordinates please refer to the add-on manual.
R-Phi conversion

0 = RAD [-1m..1]

1 = RAD [0..2m]
2 = DEG [-180..180]
3 = DEG [0..360]

This parameter defines the angular range and unit for the Phi
coordinate in the R-Phi representation of the 2d-image.
Start of DAQ Data for DAN
This pointer value defines for the DAN program part the
position in the coordinate list where the first of the TDC data
appears (sl). Usually you can set this wvalue also to 0 and the
program will automatically enter the right number.
Start of DAN Data
This pointer value defines the position in the coordinate list
where the DAN coordinates begin, i.e. it should equal the
number of hardware coordinates
(See chapter 4.6.7)
If you want to analyze the data from the first hit you can set
this value also to 0 and the program will automatically enter
the right number.
Hit number to be analyzed. Usually the position is calculated
from the first hit in the TDC channels (default value: 1). If
you want to get position and time sum calculations with the
standard “TDC8 Standard.ccf” for a different hit number you
have enter the hit value here. Note, that it can happen that
the registered channel numbers do not necessarily correspond to
the real particle hit if reflections on the raw amplifier
signals produce “false” additional hits in a certain TDC
channel number, or if hits are “lost” due to low signal
height/high threshold settings.
pTPCalX
Time to Position calibration factor for x (v, in mm/ns)

DLD40: 1.32, DLD80: 1.02, DLD120: 0.77

For Hexanode* (u): HEX80: 0.737, HEX120: 0.583
pTPCaly
Time to Position calibration factor for y (v, in mm/ns)

DLD40: 1.43, DLD80: 1.13, DLD120: 0.82

For Hexanode* (v): HEX80: 0.706, HEX120: 0.567
These two parameters define the value of position to time
calibration, the effective signal propagation speed across the
delay-line. It depends on the size and geometry of the delay-
line used. The suggested values are only accurate within few
percent for a given delay-line. If a higher precision is needed

*“ This expression is always written in #Za/ic font, not to be mistaken for the term “IDC channel”, which denominates a TDC

input slot.

Page 34 of 39

TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Reentbek

one needs to make a position calibration with a test mask in
front of the detector. If the detector shows an oval shape
please exchange the values for X and Y (only for DLD) and try
again to sort the data, eventually the physical dimensions of
the anode have been exchanged during mounting.

Parameter 112 pTPCalw
Time to Position calibration factor for Hexanode® (w):
HEX80: 0.684, HEX120: 0.540

Parameter 120 PCOx Rotation Offset Center for PosX

Parameter 121 PCOy Rotation Offset Center for PosY
These parameters define the center point for an online detector
image rotation and also the center point in the X/Y plane for a
coordinate transformation into R/Phi representation. Note that
a R/Phi transformation will only give good results if the
position unit is mm (see parameter 100).

Parameter 122 PRoOtA Rotation Angle mathematical direction
Rotation angle (counter clock wise) for an online detector
image rotation
(value to be supplied in RAD or DEG depending on parameter 103)

Parameter 125 TDC channel number p of the MCP signal (default 0). If the MCP
timing signal is not used for the common start or common stop,
the x1,x2,y1l,y2,2z1 and z2 coordinate definitions are modified:
The raw values CmHl are reduced by the raw value in the TDC
channel p (CpHl) of the MCP signal in this TDC channel number p
before further computation according to parameters 14 and 21

are eventually performed. p = 0 means: no substraction. The MCP
timing signals must then be connected to TDC channel p.
Parameter 135 pPOPx Offset for PosX
Parameter 136 pPOPy Offset for PosY

These two parameters are offset (additive) constants for
shifting the detector image in the X/Y plane. Note, that in
case of the Hexanode these values define the offsets for the
calculated x and y and not for the raw u and v values.

Parameter 137 pOPw
Offset for third anode layer (added to w, only for Hexanode)
Parameter 138 pOSum

Offset for Sum/Diff calculations
This offset value is an additive constant to all time sum/diff
coordinates

4.6.8.2 DAN coordinates, primary

The DAN coordinates are by definition only the additional coordinates that are computed from the (raw) DAQ coordinates
retrieved from the hardware or from a previously accumulated event file. This “TDC8(PCI2) Standard.ccf” picks only one set
of delay-line coordinates for one of the hits (default: first hit, see parameter 105) and calculates position and time values for
these coordinates. If you have changed parameter 2, 32 or 33 from their default value (first hit only) or if you sort a list-mode
file acquired with a non-default parameter settings) you need to adjust the (pointer) parameters 105 and 106. It is such
possible to apply the position and time calculations to the next hits if such are (or have been) acquired by adjusting these
pointer parameters. The DAN.dIl will read the values of the status registers and the channel numbers in the 4 (Hexanode: 6)
coordinates defined by parameter 105 (default: first hits) and calculate the desired position and time informations. Note that
even for the use of a DLD (4 delay-line signals only), the coordinates for two additional delay-line signals (as from the
Hexanodes) are defined and set to 0. A first set of DAN coordinates is created by using the defined set of DAQ coordinates:

AbsoluteEventTime absolute time of event from the start of data acquisition
in ps (only if enabled, see parameter 2)
DeltaEventTime time between an event and the previous event in ps (only

if time stamp recording is enabled, see parameter 2).
This spectrum can be used to determine the average event

please note that it is required to calibrate these numbers for your anode more accurately. Please contact
service@roentdek.com.

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 35 of 39



Reentek

rate (use the “fit exp” CoboldPC command on the acquired
spectrum)

EventCounter number of event from the start of data acquisition

True internal coordinate

ConsistencelIndicator

The value of this number for each event is:

Zu - 2iilr
i is the TDC channel, u =1, if at least one hit in the
TDC channel i1 was registered, otherwise 0. If each TDC-
channel for the selected hit number has received at least
one hit of the value is 15 for a DLD and 63 for a
Hexanode. This assumes that the first TDC channels are
used for the delay-line signals. Up to 16 TDC channels
are supported by this function.

PLLstatus not used for TDC8 (but must be defined)

nl number of hits in TDC channel 1

n2 number of hits in TDC channel 2

n3 number of hits in TDC channel 3

né number of hits in TDC channel 4

n5 number of hits in TDC channel 5

ne number of hits in TDC channel 6

x1 channel number of hit in channel 1 (default: hit 1)
X2 channel number of hit in channel 2 (default: hit 1)
vl channel number of hit in channel 3 (default: hit 1)
y2 channel number of hit in channel 4 (default: hit 1)
z1 channel number of hit in channel 5 (default: hit 1)

only for Hexanode
z2 channel number of hit in channel 6 (default: hit 1)

only for Hexanode

The values in these coordinates are calculated from the
retrieved channel numbers of the selected DAQ-
coordinates, e.g. (see above). Depending on parameters
100, 101, 104 these values have the specified units
(corrected or uncorrected) and are the basis for all
following computations. If a Hexanode is not used, zl and
z2 are set to zero. Note that channel 5 and 6 (for TDCS8)
can still be used for other timing signals. The
corresponding coordinates are the DAQ coordinates for
these TDC channels

These DAN coordinates are called primary because they retrieve the basic information in the DAQ coordinates for a first
data review, assuming a delay-line detector is used. The following secondary DAN coordinates are computed from the
primary coordinates and represent the first step of a (user defined) more elaborated data analysis. If you want to define
additional coordinates you should append them to the secondary DAN coordinates. Here, basically the position in a given
direction (e.g. x = x1 - x2) and the time sums (e.g. sumx = x1 + x2) are calculated from the primary DAN coordinates. Note
that the “unit” of the secondary DAN coordinates is also defined by parameter 100. Additional shift parameters can be
included and coordinate transformation or image rotation codes are provided. For the Hexanode please refer to the add-on
manual.

4.6.8.3 DAN coordinates, secondary

X x coordinate of the event (x = x1 - x2)

% y coordinate of the event (y = vyl - y2)

w set to zero

sumx time sum of x (sumx = x1 +x2 + pOSum)

sumy time sum of y (sumy = yl +y2 + pOSum)

sumw set to zero

SUMXYW sum of time sums (sumxyw = sumx + sumy - pOSum)
diffxy difference of sums (diffxy = sumx - sumy + pOSum)
PosX x-position (PosX = x + pOPx)

Page 36 of 39

TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Reentbek

PosY y-position (PosY = y + pOPy,
If hex flag not set)
(PosY = Yuv,
If hex flag set)

r r coordinate after transformation in r/phi coordinates
(from PosX/PosY)

phi phi coordinate after transformation in r/phi coordinates
(from PosX/PosY)

xRot x-position after rotation

yRot y-position after rotation

The following coordinates are only filled with valid information for the Hexanode
setup. Even though they have to be defined!

Xuv x + pOPx

Yuv 1/sqrt(3) * (x-2y) + pOPy
Xuw Xuv

Yuw 1/sqrt(3) * (2w-x) + pOPy
Xvw (y+tw) + pOPx

Yvw 1/sqrt(3) * (w-y) + pOPy
dx Xuv - Xvw

dy Yuv - Yvw

4.6.9 Spectra and conditions

The final purpose of the data acquisition is to display and manipulate the acquired data. For this purpose it is possible to
define spectra for display of all defined coordinates. A spectrum is a histogram with fixed bin width either with a one- or two
dimensional array of “slots”. For a one-dimensional spectrum (for example a time spectrum) this array is a row along the
ordinate (X-axis) of a graph, the slots (or bins) to values of the corresponding coordinate. When data are acquired or re-
sorted from a list-mode file, value of the coordinate for each event will be attributed to the closest bin’s value and the
histogram content will be incremented by one unit (along the Y-direction of the graph) in this bin. In the example such a
graph would represent the probability of time differences as function of time for the investigated set of events.

Likewise it is possible to display two-dimensional spectra, i.e. the coincident occurrence of values in two coordinates within
the corresponding bin widths (for example the 2d position distribution of the detected particles). To visualize such a
histogram the two coordinates span a plane (X/Y), the value in each bin (Z) is displayed as gray or color code, ot contour
lines are used. The range of the displayed spectra in X, Y (and Z), the bin size and the “unit” of incrementing can be defined
for optimal visualization and manipulation.

To analyze higher dimensional coordinate correlations it is possible to “gate” the sorting process into a histogram (spectrum)
by defining a condition. Such a condition can be a “window” on the occurrence of a certain range of values in a third
coordinate for the events. For example one needs to visualize the (2d) position spectra of particles as function of their time-
of-flight (TOF). Then one can define several conditions (gates) on the TOF coordinate (e.g. time sum peaks) and several 2d
position spectra with the different conditions. It is possible to link different conditions (e.g. by an “AND”) to allow the
analysis of even higher dimensional coordinate correlations.

For details about the definition of spectra and conditions, for spectrum manipulation options and data I/O to other
programs please tefer to the CoboldPC manual. In the “subDAN\Standard-Spectra.ccf” you find some pre-defined
conditions (as an example) and spectra that will allow you to view the most important coordinates. For example, you will
immediately be able to see a position spectrum.

You may now edit the “TDC8(PCI2) Standard.ccf” and all subprograms (especially the “subDAN\Standard-Spectra.ccf”) to
adjust them to your needs, e.g. setting the right condition gates on the time sum peak(s) omitting spectra that you do not
need, adjust parameters (for shifting or rotating the spectra, calibrating position and time), changing or adding spectrum
definitions.

Please note that these functions are only “first level” modifications of the data acquisition and analysis option provided by
CoboldPC. More advanced data treatments like defining new (computed) coordinates to the analysis can be done by
additionally modifying the DAN.AIl using a2 MS C++ orf FORTRAN compiler. Please refer to the CoboldPC manual for
details.

Also, there is a “zero-level” of operating for the recent CoboldPC 2002 versions, allowing addressing the CoboldPC
commands by a sctipting language. Again, for details refer to the CoboldPC manual.

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 37 of 39



Roentbek

If you are ready to run a session with the hardware now, you may execute the “TDC8(PCI2) Standard.ccf” file again and click
the hardware button. But before make sure to follow the steps in the “Getting Started’ chapter in the “Position and time
sensitive multi-hit MCP delay-line detector systen?’ manual.

Page 38 of 39 TDCS8 ISA & PCI(2) Manual (9.8.907.1)



Roentbek

Handels GmbH

List of Figures

FIGURE 1.1: FRONT AND SIDE VIEW OF THE TDCB/ISA BOARD. .....vvcitiiiiiieitieiteeiteeiteaitestesssesssesbaestsesbessresssesssessssssesssessesnns 5
FIGURE 1.2: TDCBPCI BOARD AND FRONT VIEW .....uiiiiittieeiiitieeeeitteeeeetteeeestteeeaatteeesessesessstaeeeaastessessssaesassesesasteeeesnsssesssssenens 6
FIGURE 1.3: TDCB8PCI2 BOARD AND SIDE VIEW ......uuiiiiiuiieeiittieeeeitteeeeetteeeeatteeeaetseessassesessibseseaastessessssaesassesesassesessnsssesssssenens 7
FIGURE 1.4: TWO TDCB8PCI2 IN SYNCHRONIZED CONFIGURATION .....uuviiiiiitiieeeitiieeeiieeeeetteeeeesteeeessseeeessseesassseeessssseesassenens 7
FIGURE 3.1: FIRMWARE CHIP REPLACEMENT FOR TDCBPC ...ttt ettt ettt 12
FIGURE 3.2: FIRMWARE CHIP REPLACEMENT FOR TDCBPCIZ..... vttt ettt 12
FIGURE 4.1: CONNECTING TWO TDCBPC I ...ttt ettt et e e e et e e e et e e e s bt e e e e e bbe e e e entee e e enreas 14
FIGURE 4.2: CONNECTING TWO TDECBPCIZ ...t ettt te e st be e st e e st e e sat e e s sbe e snte e s nbeeebeeeteeeneeeees 15
FIGURE 4.3: TDC8 OPEN TIME ADJUSTMENT (MONITOR OUTPUT) ...vouiiiitiiieeteeeeiestessestessessessassseseessessessessessssssessessessessens 16
List of Tables

TABLE 1: TDCB8 ISA DIP-SWITCHES FOR /O SELECTION ....veiiviiiveeiteeiteeitesateesreesisessbessssessssesssesssssssssessssessssesssssssnsesssnes 5
TABLE 2: MEMORY ACCESS TABLE FOR TDCBPC I .....ovoiiiiiiie ettt ettt e et e e e et e e s eabee e e enbaeeeenns 21
TABLE 3: MEMORY ACCESS TABLE FOR TDCBPC I ......viiiiitee ettt ettt e ettt e et e e e eate e e s eabee e e enbaeeeenns 26

TDC8 ISA & PCI(2) Manual (9.8.907.1) Page 39 of 39



	The hardware
	ISA-Bus TDC8
	PCI-Bus TDC8
	TDC8PCI2
	Two TDC8PCI2 synchronized
	What is new with the TDC8PCI2

	Installation of the TDC8 ISA or PCI
	Firmware Update
	TDC8PCI
	TDC8PCI2

	Using the TDC8 card
	General operation information for the TDC8 (ISA and PCI)
	Two module mode with TDC8ISA
	Two module mode with TDC8PCI
	Two module mode with TDC8PCI2

	Adjusting the TDC Open Time
	General information to program the TDC8/ISA
	Operational description
	Configuring the 8255 I/O chips
	Test for present data
	MTD133B acquisition and readout
	C Sample Source Code for TDC8-ISA initialization and read-out

	General information to program the TDC8PCI(2)
	Configuring the MemAcc library
	Retrieve memory address of the TDC8PCI(2)
	TDC8PCI
	Memory block used by the TDC8PCI
	C Sample Source Code for TDC8PCI initialization and read-out

	TDC8PCI2
	Memory block used by the TDC8PCI2
	C Sample Source Code for TDC8PCI2 initialization and read-out


	Using the TDC8 card with CoboldPC DAQ software
	DAN and DAQ Modules
	The “TDC8 Standard.ccf”
	The “TDC8PCI2 Standard.ccf”
	DAQ parameters
	Additional DAQ parameters for TDC8PCI2
	Additional DAQ parameters for two TDC8PCI or TDC8PCI2 Modules
	DAQ coordinates
	DAN parameters and coordinates:
	DAN parameters
	DAN coordinates, primary
	DAN coordinates, secondary

	Spectra and conditions


	List of Figures
	List of Tables

